智能制造

智能制造论文 前沿研究丨从智能科学到智能制造

小编 2024-10-11 智能制造 23 0

前沿研究丨从智能科学到智能制造

本文选自中国工程院院刊《Engineering》2019年第4期

作者:Lihui Wang

来源:From Intelligence Science to Intelligent Manufacturing[J].Engineering,2019,5(4):615-618.

编者按

智能科学大致包括自然智能和人工智能两个领域。自然智能是发现生命系统智能行为的科学,而人工智能是制造智能软件和系统的科学和工程。智能制造对人工智能保持着很高的依赖度。

中国工程院院刊《Engineering》刊发《从智能科学到智能制造》一文,基于智能科学到智能制造的视角,探析人工智能发展简史,指出智能制造的目标是利用集成信息技术和人工智能,将先进的计算能力与制造设备相结合,在本地或全球建立灵活、适应性强的制造业务,人工智能在云计算、大数据分析、物联网、移动互联网/5G等新技术的支持下,将为智能制造带来众多机遇:延迟时间短的远程实时监控和控制;通过机会过程计划和调度进行无缺陷加工;具有成本效益和安全的资产预测维护;整体规划和控制复杂的供应链。

一、引言

智能制造的目标是利用集成信息技术(IT)和人工智能(AI),将先进的计算能力与制造设备相结合,在本地或全球建立灵活、适应性强的制造业务。智能制造依赖于及时获取、分发和利用制造车间甚至整个产品生命周期内机器和流程的实时数据。有效的信息共享可以提高生产质量、可靠性、资源效率和报废产品的可回收性。基于数字化的智能制造也旨在更具可持续性,并为未来的工厂做出贡献。然而,智能制造广泛依赖于人工智能。为了更好地掌握智能制造的未来,有必要了解人工智能。笔者从智能科学到智能制造,提出了对人工智能的看法。

二、人工智能的简史

人工智能是智能科学的一个分支,智能科学领域大致涵盖两个领域:自然智能和人工智能 。自然智能是发现生命系统智能行为的科学,而人工智能是制造智能软件和系统的科学和工程。这两个研究领域在过去的几十年相互促进。自然智能的发展为人工神经网络(ANN)、遗传算法(GAS)和蚁群优化(ACO)等的人工智能研究奠定了坚实的基础,而先进的人工智能工具有助于加速自然智能的发现。由于人工智能的历史相对较短,该领域的研究仍然活跃,有前景,并且还有待进一步发现,如在制造业的背景下。

在讨论智能制造之前,有必要简要回顾一下人工智能的历史,如图1所示。人工智能的历史可以追溯到20世纪40年代初。第一个人工智能是伊利诺伊大学的沃伦·麦卡洛克和沃尔特·皮兹创造的二元人工神经网络模型。尽管他们的模型只考虑了二元状态(即每个神经元的开/关),但该模型在20世纪80年代末却是快速人工神经网络研究的基础。在1950年,英国数学家阿兰·图灵提出了著名的“图灵测试”来确定机器是否能思考。“图灵测试”是通过计算机通信进行的,由一个考官、一个人和一台机器(即计算机)在单独的房间中进行。考官可以问任何问题。如果考官无法根据答案区分机器和人,则机器通过测试。1951年,普林斯顿大学的两名研究生马文·明斯基和迪恩·艾德蒙兹建造了第一台用于模拟40个神经元网络的神经元计算机。

图1 人工智能的简史

人工智能开发的一个重要里程碑是第一次人工智能研讨会这个研讨会标志着人工智能历史上“黑暗时代”的结束和“人工智能崛起”的开始 。该研讨会于1956年在达特茅斯学院举行。麦卡锡提出的“人工智能”一词在当时就得到了认可,并沿用至今。麦卡锡后来搬到麻省理工学院。1958年,他定义了第一种人工智能语言LISP,该语言至今仍在使用。该领域最雄心勃勃的项目之一是通用解题程序(GPS),由艾伦·纽厄尔和卡内基梅隆大学的赫伯特·西蒙于1961年创建。GPS基于形式逻辑,可以生成无数个试图找到解决方案的运营商,但在解决复杂问题方面效率低下。1965年,加州大学伯克利分校的拉特飞·扎德发表了他的著名论文《模糊集》,这是模糊集理论的基础。第一个专家系统DENDRAL于1969年在斯坦福大学开发,该项目由美国国家航空航天局(NASA)资助,由诺贝尔遗传学奖获得者乔舒亚·莱德伯格领导。然而,由于当时大多数人工智能项目只能处理玩具问题而不是现实世界的问题,所以许多项目在美国、英国和其他几个国家被取消,人工智能研究进入了所谓的“人工智能冬季”。

尽管被削减了资金,但人工智能研究仍在继续。1969年,Bryson和Ho提出了神经网络学习的反向传播基础。此外,第一个遗传算法是由密歇根大学的约翰·霍兰德于1975年提出的,他使用选择、交叉和变异作为遗传算子进行优化。1976年,MYCIN由斯坦福大学丹德拉的同一个研究小组开发。MYCIN系统是一种基于规则的血液疾病诊断专家系统,使用450个if-then规则,被发现比初级医生表现得更好。

30年后,人工智能领域再次开始神经网络的研究。人工智能成为一门科学的新时期始于1982年,当时约翰·霍普菲尔德出版了他的霍普菲尔德网络(Hopfield Networks),该网络至今仍广受欢迎。1986年,反向传播在它被提出的16年后成为人工神经网络中真正实现的学习算法。它还通过并行分布式处理触发了分布式人工智能(DAI)的启动。经过22年的发展,日本的公司于1987年成功地将模糊集理论或模糊逻辑构建到洗碗机和洗衣机中。1992年,John Koza提出遗传编程来操纵代表Lisp程序的符号代码。基于DAI和人工生命的思想,智能代理在20世纪90年代中期逐渐形成。20世纪90年代末,模糊逻辑、ANN和遗传算法(GA)的混合系统开始流行用于解决复杂问题。最近,各种新的人工智能方法应运而生,包括ACO、粒子沼泽优化(PSO)、人工免疫优化(AIO)和DNA计算。人工智能在未来的潜力(如制造业)仍然无法预测。

第一个流行的AI工具可能是基于AI的国际象棋计算机程序“深蓝”(Deep Blue),该程序由IBM创造。当世界象棋冠军加里·卡斯帕罗夫在1997年的一场表演赛中与“深蓝”一起比赛时,他以2.5︰3.5输给了“深蓝”。另一个早期的例子是2005年的本田ASIMO机器人,它能够爬楼梯。对于机器人在非结构化环境中移动并由人类指挥,它需要具备在运行时自然语言处理、计算机视觉、感知、对象识别、机器学习和运动控制的能力。在2016年,DeepMind的AlphaGo 使用云计算、强化学习和蒙特卡罗搜索算法结合深度神经网络进行决策,在五场比赛中有四场击败了世界围棋冠军李世石。它的新版本Alphago Zero,通过从头开始的自我学习,在短短三天内就超越了Alphago的能力。如今,从下棋到机器人控制,从疾病诊断到飞机自动驾驶仪,从智能设计到智能制造,人工智能技术和系统无处不在。除了图1中总结的人工智能技术外,机器学习和深度学习显示了智能制造的巨大前景。

表1根据是否受监督或无监督、区分性或生成性以及深度学习或非深度学习对典型的机器学习模型进行分类。

表1 典型的机器学习模型

三、人工智能在制造业中的代表性例子

在制造业背景下,智能科学,或者更具体地说,机器学习模型形式的AI,有助于智能制造 。图2描绘了人机协作(HRC)的一种场景,其中来自传感器和现场设备的数据在应用适当的机器学习模型后被转换为知识。使用特定领域的HRC决策模块进一步将知识转化成行动。因此,操作人员可以在沉浸式环境中安全地使用机器人,而机器人可以预测人类接下来会做什么,并根据需要提供现场帮助。

图2 智能制造中的机器学习

脑机器人是利用有经验的人类操作者的脑电波进行自适应机器人控制的另一个例子 。不需要遵循数据—知识—动作链,只需通过适当的训练将人类脑电波模式映射到机器人控制命令即可实现脑电波—动作的进展,如图3所示。在这种情况下,使用一个14通道的EMOTIV EPOC +设备(EMOTIV,美国)来收集人类的脑波信号。信号处理后的匹配命令被传递给机器人控制器进行自适应执行。

图3 脑机器人人机协作

四、机遇与挑战

人工智能和云计算、大数据分析、物联网、移动互联网/5G等最新IT技术的支持,为智能制造提供了众多机遇。这些新技术将促进智能制造中的实时信息共享、知识发现和知情决策,具体如下

• 物联网为数据收集提供更好的机器和现场设备连接,因此使实时数据收集成为可能。

• 移动互联网/5G使得以超低延迟传输大量数据,实现实时信息共享成为可能。

• 云计算提供快速和按需数据的分析;它还有助于储存数据,这些数据可以轻松地与授权用户共享。

• 大数据分析可以揭示数据中隐藏的模式和有意义的信息,从而将数据转化为信息,并进一步将信息转化为知识。

例如,智能制造的新机遇可能包括 :①延迟时间短的远程实时监控和控制;②通过机会过程计划和调度进行无缺陷加工;③具有成本效益和安全的资产预测维护;④整体规划和控制复杂的供应链。

此外,近期的智能制造将受益于上述不同时间尺度的技术,具体如下

• 5年内,主要通过物联网和移动互联网实现更好的横向和纵向集成,可以消除自动化岛之间的80%的差距;

• 10年内,主要通过云计算和大数据分析实现经验驱动的制造运营,可能会在先前知识的支持下变成数据驱动;

• 20年内,众多中小型企业(SME)可以通过云制造技术为所有人提供服务,从而在全球市场中获得竞争优势。

然而,复杂性和不确定性仍将是未来几年制造业面临的主要挑战。人工智能和机器学习可以在很大程度上提供缓解甚至解决这些挑战的机会。例如,可以使用深度学习来更好地理解制造环境,并在制造过程发生之前更准确地预测未来的问题或失败,从而实现无缺陷制造。

安全的HRC是智能和灵活的自动化进程中的另一个挑战,其中包括人工参与。这种协作是有用和必要的,特别是在制造装备操作中,深度学习可以帮助机器人变得足够智能,以帮助人类操作员,同时为人类的绝对安全提供更好的情境意识。

最后,在未来的工厂中实施智能制造之前,网络安全和新的商业模式必须得到充分的重视。

注:本文内容呈现形式略有调整,若需可查看原文。

改编原文:

Lihui Wang.From Intelligence Science to Intelligent Manufacturing[J].Engineering,2019,5(4):615-618.

☟ 如请点击文末“阅读原文”

前沿研究:走向新一代智能制造

前沿研究:介尺度中的复杂性——人工智能发展中的共性挑战

智能制造的三个基本范式

前沿研究:智能制造领域的研究进展

战略研究:新一代人工智能引领下的智能制造

智能制造助力制造业高质量发展

中国工程院院刊

工程造福人类

科技开创未来

微信公众号ID :CAE-Engineering

注:论文反映的是研究成果进展,不代表《中国工程科学》杂志社的观点。

智能制造发展现状、态势及重点领域浅析|数连世界 智造未来

一、智能制造背景及内涵

制造业是国民经济的基础工业部门,是决定国家发展水平的最基本因素之一。自20世纪80年代开始,以计算机为基础的信息技术得到迅猛发展,为传统制造业提供了新的发展机遇,计算机技术、网络信息技术、自动化技术与传统制造技术相结合,逐渐形成了先进制造、数字化生产、精益制造等概念。国际金融危机发生后,发达国家纷纷实施“再工业化”战略,重塑制造业竞争新优势,一些发展中国家也加快谋划和布局,积极参与全球产业再分工,承接产业及资本转移,拓展国际市场空间。在此背景下,智能制造概念应运而生。

智能制造的本质,是运用物联网、大数据、云计算、移动互联等新一代信息技术及智能装备对传统制造业进行深入广泛地改造提升,实现人、设备、产品和服务等制造要素和资源的相互识别、实时交互和信息集成,推动产品的智能化、装备的智能化、生产方式的智能化、管理的智能化和服务的智能化发展。

二、智能制造发展现状与态势分析

当前,全球产业竞争格局正在发生重大调整,世界各国积极加快智能制造重大战略政策部署,产业层面,跨国工业巨头、互联网企业、等从不同角度推进智能制造发展,引发新一轮竞争热潮。

国家层面,美国于2009年提出《重振美国制造业框架》,随后又陆续制定了《2010制造业促进法案》《国家制造业创新网络初步设计》等政策,2011年提出的“先进制造伙伴计划”基本确立了以工业互联网为核心的智能制造发展思路。德国于2011年提出了“工业4.0”战略,先后出台《保障德国制造业的未来: 实施“工业 4. 0”战略建议》、《数字议程(2014-2017)》、《数字化战略2025》等政策。我国高度重视智能制造发展,国务院先后印发《关于深化制造业与互联网融合发展的指导意见》、《深化“互联网+先进制造业”发展工业互联网的指导意见》等重大文件,将智能制造作为两化融合的主攻方向和加快制造强国建设的重要突破口。

表1 中美德政策战略对比

产业层面,新一代信息技术与制造业加快深度融合,形成新的生产方式、产业形态、商业模式和经济增长点。基于信息物理系统(CPS)的智能车间、智能工厂等正在引领制造方式变革;网络众包、协同研发设计、大规模个性化定制、全生命周期管理等正在重塑产业价值链体系;可穿戴智能设备、智能家电、智能机器人、无人驾驶汽车等智能终端产品不断拓展制造业新领域。

企业层面,西门子、通用电气等跨国工业巨头依托先进制造技术优势,搭建智能制造平台系统,推进工业数字化进程;英特尔、NPX等全球半导体龙头企业加快投资并购步伐,发展人工智能芯片、智能终端、感知设备等,提升网络互连、数据采集、边缘计算能力;微软、思科、IBM等互联网巨头通过战略投资和跨界合作,发展面向制造业的数据分析、应用和服务模式创新等,加快智能制造领域布局。

三、智能制造重点发展领域

工业机器人 :工业机器人是先进制造业的核心技术装备,是衡量一个国家制造业水平和核心竞争力的重要标志,发达国家均把发展机器人产业作为提升制造业竞争力的主要途径。目前,新一代工业机器人正在向网络化、智能化方向发展。网络化,即多个机器人通过工业互联网实现工作流程、工艺环节的高效协同;智能化,即工业机器人能够自主分解执行作业任务与行动目标,根据环境初始条件信息及时做出应对,并自主选择最优方案。

网络协同创新平台 :网络协同创新平台可以部分理解为工业云,即跨越空间地域限制的开放式、可拓展的协同创新平台。该平台能够集聚各种创新资源,缩短研发周期,提高响应速度、降低研发成本,同时提供技术支持、融资对接、人才培训等服务,推动新技术、新产品研发及产业化,促进用户深度参与、产业链上下游企业高度协同,充分调动各类主体的积极性和创造性,实施深度合作和迭代式创新,进而形成面向工业制造领域的万众创新。

智能工厂 :智能工厂是实现智能制造的重要载体,其本质是以信息物理系统(CPS)和工业互联网为核心,利用信息技术和智能装备对生产工艺、组织流程、管理服务模式以及产品全生命周期进行数字化、网络化、智能化改造,加强设备、制造单元、生产线、车间、工厂的互联互通,实现人、机、法、料、环高度协同融合,推动企业纵向集成和横向集成,并基于工业大数据应用和工业云服务,为企业提供工厂级的端到端整体解决方案,实现提质增效和产业转型升级。

四、发展策略及建议

一是提升智能制造软硬件供给能力。 继续组织实施智能制造发展专项、高档数控机床与基础制造装备科技重大专项,推进工业机器人、增材制造、工业软件与系统、工业大数据等关键软硬件产品及服务的联合攻关,突破核心电子器件、高端芯片、关键材料核心技术和产业化瓶颈,全面提升设计工具、制造执行系统、产品全生命周期管理、工控系统及整体解决方案的自主提供能力。

二是加强智能制造应用示范推广。 围绕钢铁、石化、航空、汽车、装备、电子等重点行业的智能制造发展需求,遴选部分规模效益突出、行业影响力显著的典型企业,分别打造若干个功能完善、模式创新、示范作用明显的样板式智能车间或智能工厂。加快智能人机交互、工业机器人、增材制造等技术和装备在工业领域的应用,培育发展一批智能制造解决方案提供商,为工业智能制造所需的信息技术升级、产业链协同创新提供支撑。

三是鼓励企业开展组织形态与服务模式创新。 以互联网+制造业创新发展为引领,以工业互联网为支撑,以激发传统企业互联网转型内生动力为着力点,鼓励制造企业发展基于互联网的众包设计、个性化定制、网络协同研发、云制造等新型制造模式,鼓励信息技术企业发展智能传感器、工业云平台、工业大数据、工业APP等产品服务和解决方案,支撑制造业创新转型发展。

作者简介

夏磊,中国信息通信研究院产业与规划研究所工程师,研究方向包括物联网、智慧城市、工业互联网、智能制造等信息化领域。多次参与国家部委物联网相关政策编制工作,承担多项省、市级物联网和智慧城市领域研究咨询项目。

联系方式:xialei@caict.ac.cn

相关问答

宁波诺丁汉大学科研实力如何?有哪些科研成果?

科研实力:在科研方面,宁波诺丁汉大学凭借独特的优势,整合海内外优质科研资源,特别是利用英国诺丁汉大学与国际企业、欧盟等机构的伙伴关系,结合地方发展需...

全球5G标准必要专利声明中,我国企业占比超过30%,位居首位!你怎么看?

应邀回答本行业问题。全球5G标准必要专利之中,我国企业占比超过30%,这是中国通信制造业企业坚持走研发道路结出的硕果,也是中国移动一直坚持TDD组网结出的硕...

“人工 智能 ”是否在引领新的工业革命?会给世界经济带来多大的影响?

说实话,课题有点大。最近两篇文章比较火,一篇是高盛的《China’sRiseinArtificialIntelligence》、一篇是麻省理工科技评论的专题文章《中国人工智能的崛...

河南牧业经济学院 智能制造 与自动化学院怎么样?设有哪些专业?...

[回答]~接下来我为大家简单介绍一下我们河南牧业经济学院的智能制造与自动化学院开设的专业以及研究情况专业设置:本科专业:农业机械化及其自动化专科专业...

四川工业科技学院罗江校区有哪些专业?

有智能制造与车辆工程、建筑工程、电子信息与计算机工程、财经、管理、食品与服装、体育、教育、护理、继续教育、航空等专业。四川工业科技学院是一所以工学...

考上武汉理工大学的王牌专业材料科学,但儿子想转到人工 智能 或自动化等,划算吗?

从材料转到人工智能或者自动化,当然划算。材料大部分都读研,不读研的基本转行;读完研的,一部分在高校当材料老师,一小部分去科研院所和企业搞材料,还有一...武...

济宁学院计算机科学系怎么样?设有哪些专业? 申请方

[回答]~接下来我为大家简单介绍一下我们济宁学院的计算机科学系开设的专业以及研究情况专业设置:本科专业:计算机科学与技术专科专业:计算机应用技术、计...

被江南大学的机械类专业录取了,这个专业发展前景怎么样?

希望能帮助到您。首先,江南大学是教育部直属的一所以轻工高等教育为特色的高校,被誉为“轻工高等教育明珠”,国家“211工程”和“985工程“优势学科创新平台”...

现在,电子信息行业最发达,产业最强的是哪个地方?

电子信息司围绕中国制造2025、“互联网+”等国家重大战略,积极落实党中央、国务院和工信部有关稳增长、...如三星在产业链上的完整性和某些环节的垄断性,如苹...

宝鸡文理学院机械工程学院怎么样?设有哪些专业? 申请方

[回答]~接下来我为大家简单介绍一下我们宝鸡文理学院的机械工程学院开设的专业以及研究情况专业设置:机械设计制造及其自动化、机械电子工程、工业设计、...

猜你喜欢